Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, W. ; Dept. of Appl. Math., Univ. of Sheffield, Sheffield, UK ; Wyatt, L.R.

High-frequency surface wave radar (HFSWR) has been widely adopted as a useful remote-sensing tool for sea-state monitoring. There are limitations to the performance because of various unwanted clutters and interferences that contaminate radar signals. Among all types of unwanted signals, radio frequency interference (RFI) is dominant since the frequency bands 3-30-MHz, the operation range of HFSWR, are shared by many radio services. If RFI occupies the areas in the Doppler spectrum that are essential for the estimation of oceanographic parameters, for example, wind speed, current speed, wave height etc., it will significantly reduce the quality of the data. The characteristics of RFI in time, space and Doppler domains are analysed for sea-state monitoring, and a robust and general signal processing method consisting of image recognition, segmentation processing and subspace projection for cancellation of RFI is proposed. The effectiveness of this approach is validated using data obtained with the Pisces HF radar, which is a high-performance radar developed for long-range wave measurement, operating in the lower half of the HF band (5-10-MHz).

Published in:

Radar, Sonar & Navigation, IET  (Volume:5 ,  Issue: 4 )