By Topic

A Novel Architecture for Reduction of Delay and Queueing Structure Complexity in the Back-Pressure Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bui, L.X. ; Dept. of Manage. Sci. & Eng., Stanford Univ., Stanford, CA, USA ; Srikant, R. ; Stolyar, A.

The back-pressure algorithm is a well-known throughput-optimal algorithm. However, its implementation requires that each node has to maintain a separate queue for each commodity in the network, and only one queue is served at a time. This fact may lead to a poor delay performance even when the traffic load is not close to network capacity. Also, since the number of commodities in the network is usually very large, the queueing data structure that has to be maintained at each node is respectively complex. In this paper, we present a solution to address both of these issues in the case of a fixed-routing network scenario where the route of each flow is chosen upon arrival. Our proposed architecture allows each node to maintain only per-neighbor queues and, moreover, improves the delay performance of the back-pressure algorithm.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 6 )