By Topic

Using constraint satisfaction in genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kowalczyk, R. ; Div. of Inf. Technol., CSIRO, Carlton, Australia

Existing methods to handle constraints in genetic algorithms (GA) are often computationally expensive or problem domain specific. In this paper, an approach to handle constraints in GA with the use of constraint satisfaction principles is proposed to overcome those drawbacks. Each chromosome representing a set of constrained variables in GA is interpreted as an instance of the same constraint satisfaction problem represented by a constraint network. Dynamic constraint consistency checking and constraint propagation is performed during the main GA simulation process. Unfeasible solutions are detected and eliminated from the search space at early stages of the GA simulation process without requiring the problem specific representation or generation operators to provide feasible solutions. Constraint satisfaction is applied actively in GA during initialisation, crossover and mutation operations to advantage

Published in:

Intelligent Information Systems, 1996., Australian and New Zealand Conference on

Date of Conference:

18-20 Nov 1996