Cart (Loading....) | Create Account
Close category search window
 

State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hongwen He ; Nat. Eng. Lab. for Electr. Vehicles, Beijing Inst. of Technol., Beijing, China ; Rui Xiong ; Xiaowei Zhang ; Fengchun Sun
more authors

An adaptive Kalman filter algorithm is adopted to estimate the state of charge (SOC) of a lithium-ion battery for application in electric vehicles (EVs). Generally, the Kalman filter algorithm is selected to dynamically estimate the SOC. However, it easily causes divergence due to the uncertainty of the battery model and system noise. To obtain a better convergent and robust result, an adaptive Kalman filter algorithm that can greatly improve the dependence of the traditional filter algorithm on the battery model is employed. In this paper, the typical characteristics of the lithium-ion battery are analyzed by experiment, such as hysteresis, polarization, Coulomb efficiency, etc. In addition, an improved Thevenin battery model is achieved by adding an extra RC branch to the Thevenin model, and model parameters are identified by using the extended Kalman filter (EKF) algorithm. Further, an adaptive EKF (AEKF) algorithm is adopted to the SOC estimation of the lithium-ion battery. Finally, the proposed method is evaluated by experiments with federal urban driving schedules. The proposed SOC estimation using AEKF is more accurate and reliable than that using EKF. The comparison shows that the maximum SOC estimation error decreases from 14.96% to 2.54% and that the mean SOC estimation error reduces from 3.19% to 1.06%.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 4 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.