By Topic

An Optimized Implementation of Phase Locked Loops for Grid Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Freijedo, F.D. ; Dept. of Electron. Technol., Univ. of Vigo, Vigo, Spain ; Yepes, A.G. ; Lopez, O. ; Fernandez-Comesana, P.
more authors

This paper presents an optimized digital implementation of phase locked loops (PLLs) for grid applications suitable for implementation in low-cost industrial devices. A robust PLL is crucial in most of power converter applications, particularly in distorted environments. That is, the phase estimation should not be affected by power quality phenomena, given by Standard EN 50160, such as harmonics, imbalance, line notching, and voltage sags. The PLL dynamics is optimized as follows. A notch filter inside the loop is implemented to enhance the steady-state filtering. The bandwidth is maximized to get a fast postfault retracking (transient response). As justified in this paper, this approach is very suitable for both single- and three-phase PLLs. A low-resource-consuming implementation of the digitally controlled oscillator is provided: A digital model based on an RC electronic oscillator implements the needed trigonometric functions. This reduces the needed digital resources without reducing the performance. The proposed PLLs have been implemented and tested in a fixed-point DSP TI TMS320LF2407. These PLLs have been tested using different distorted inputs. Experimental results show that fast and rippleless phase estimations are achieved by the proposed implementations.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 9 )