By Topic

Effect of ambient temperature on electrical treeing characteristics in silicone rubber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. X. Du ; Department of Electrical Engineering, School of Electrical Engineering and Automation Tianjin University ; Z. L. Ma ; Y. Gao ; T. Han

In this paper, electrical treeing was investigated in room temperature vulcanized (RTV) silicone rubber (SiR) over a range of ambient temperatures. An ac voltage with a frequency of 50 Hz was applied between a needle-plate electrode to initiate the electrical tree at different ambient temperatures. Both the structures and the growth characteristics were observed by using a digital microscope system. Obtained results show that the tree initiates from a single branch with a white gap. Four typical tree structures, namely branch, bush, pine branch and bush-pine mixed tree, were observed within the sample. The occurrence of tree structures changes with the increase of ambient temperature, in which branch tree takes up a great proportion at 30°C while bush tree becomes dominated as the temperature rises up to 90°C. Meanwhile, the cumulative inception probability within the same time decreases obviously with the increase of ambient temperature. The growth rate of the tree is closely related to the ambient temperature. It is suggested that the increase of vulcanization network density and elastic modulus with ambient temperature may have great influence on the treeing characteristics (including growth rate, fractal dimension and treeing proportion).

Published in:

IEEE Transactions on Dielectrics and Electrical Insulation  (Volume:18 ,  Issue: 2 )