By Topic

Accurate Moving Cast Shadow Suppression Based on Local Color Constancy Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Amato, A. ; Dept. of Comput. Sci., Univ. Autonoma de Barcelona, Barcelona, Spain ; Mozerov, M.G. ; Bagdanov, A.D. ; Gonzalez, J.

This paper describes a novel framework for detection and suppression of properly shadowed regions for most possible scenarios occurring in real video sequences. Our approach requires no prior knowledge about the scene, nor is it restricted to specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene, the values of the background image are divided by values of the current frame in the RGB color space. We show how this luminance ratio can be used to identify segments with low gradient constancy, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of our method compared with the most sophisticated, state-of-the-art shadow detection algorithms. These results show that our approach is robust and accurate over a broad range of shadow types and challenging video conditions.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 10 )