Cart (Loading....) | Create Account
Close category search window

Noise Reduction of Hyperspectral Images Using Kernel Non-Negative Tucker Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karami, A. ; Dept. of Commun. & Electron., Shiraz Univ., Shiraz, Iran ; Yazdi, M. ; Zolghadre Asli, A.

We propose a new noise reduction algorithm for the denoising of hyperspectral images. The proposed algorithm, Genetic Kernel Tucker Decomposition (GKTD), exploits both the spectral and the spatial information in the images. With respect to a previous approach, we use the kernel trick to apply a Tucker decomposition on a higher dimensional feature space instead of the input space. A genetic algorithm is used to optimize for the lower rank Tucker tensor in the feature space. We evaluate the effect of the kernel algorithm with respect to non-kernel GTD, and also compare the results to those from principal component analysis bivarate wavelet shirinking on real images. Our results show a better performance of the proposed method.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.