By Topic

Patterns of Inefficient Performance Behavior in GPU Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eschweiler, D. ; Julich Supercomput. Centre, Forschungszentrum Julich, Jülich, Germany ; Becker, D. ; Wolf, F.

Writing efficient software for heterogeneous architectures equipped with modern accelerator devices presents a serious challenge to programmer productivity, creating a need for powerful performance-analysis tools to adequately support the software development process. To guide the design of such tools, we describe typical patterns of inefficient runtime behavior that may adversely affect the performance of applications that use general-purpose processors along with GPU devices through a CUDA compute engine. To evaluate the general impact of these patterns on application performance, we further present a micro benchmark suite that allows the performance penalty of each pattern to be quantified with results obtained on NVIDIA Fermi and Tesla architectures, indeed demonstrating significant delays. Furthermore this suite can be used as a default test scenario to add CUDA support to performance-analysis tools used in high-performance computing.

Published in:

Parallel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro International Conference on

Date of Conference:

9-11 Feb. 2011