By Topic

Modeling Passive Mode-Locking in Quantum Dot Lasers: A Comparison Between a Finite-Difference Traveling-Wave Model and a Delayed Differential Equation Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mattia Rossetti ; Dipartimento di Elettronica, Politecnico di Torino, Turin, Italy ; Paolo Bardella ; Ivo Montrosset

We present a detailed quantitative comparison between a finite-difference traveling wave (FDTW) model and a delayed differential equation (DDE) approach for the simulation of passive mode-locking in quantum dot lasers with both ring and Fabry-Perot (FP) cavities. Modifications with respect to the standard DDE models available in the literature are proposed. The new DDE approach improves the quantitative agreement with the FDTW model when applied to the simulation of passive mode-locking in FP lasers, preserving a very high computational efficiency. The modifications proposed in the DDE model also apply to the simulation of quantum-well and bulk devices.

Published in:

IEEE Journal of Quantum Electronics  (Volume:47 ,  Issue: 5 )