By Topic

Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ian McKerracher ; Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australia ; Jenny Wong-Leung ; Greg Jolley ; Lan Fu
more authors

Quantum dot infrared photodetectors have generated significant interest in recent years. They have the potential to outperform quantum well detectors in terms of normal-incidence responsivity and higher operating temperatures. Here, an InGaAs/GaAs dots-in-a-well detector grown by metal-organic chemical vapor deposition is spectrally tuned by rapid thermal annealing under dielectric layers. Four films are considered: SiO2 deposited by both plasma-enhanced chemical vapor deposition and sputter deposition, as well as TiO2 deposited by electron-beam evaporation and sputter deposition. The devices fabricated after these treatments are compared with an uncapped but annealed reference, and also with an as-grown device. The photoresponse peak in the latter occurs at 7.1 μm, whereas the peak responses of the annealed devices range from 7.4 to 11.0 μm. The films themselves were characterized and their properties related to the photoluminescence and spectral photoresponse of each detector. Peak responsivity, specific detectivity, and dark current were also measured for each device to compare their performance.

Published in:

IEEE Journal of Quantum Electronics  (Volume:47 ,  Issue: 5 )