By Topic

Effect of Surface Texture and Backside Patterned Reflector on the AlGaInP Light-Emitting Diode: High Extraction of Waveguided Light

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Ju Lee ; Inst. of Electro-Opt. Sci. & Technol., Nat. Taiwan Normal Univ., Taipei, Taiwan ; Chia-Jung Lee ; Chih-Hao Chen

This paper describes a novel structure of an AlGaInP light-emitting diode (LED) to extract the waveguided light for high-brightness applications. Four devices are considered and compared. They are AlGaInP-sapphire LEDs with: 1) a planar Ag reflector (LED-A); 2) a patterned Ag reflector (LED-B); 3) a planar Ag reflector and surface-roughened features (LED-C); and 4) a patterned Ag reflector and surface-roughened features (LED-D). The patterned Ag reflector can be used to direct some of the waveguided light that bounces within the AlGaInP LED and sapphire substrate to the top escape cone of the LED surface. Additionally, the roughened features, which are randomly distributed on the LED surface, enable the waveguided light that is trapped inside the LED chip to be coupled efficiently into the air. As a result, the external quantum efficiencies of LED-A, LED-B, LED-C, and LED-D measured at I = 350 mA are η = 9.20%, 10.46%, 15.22%, and 16.75%, respectively.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 5 )