By Topic

Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chanel, G. ; Comput. Sci. Dept., Univ. of Geneva, Carouge, Switzerland ; Rebetez, C. ; BeĢtrancourt, M. ; Pun, T.

This paper proposes to maintain player's engagement by adapting game difficulty according to player's emotions assessed from physiological signals. The validity of this approach was first tested by analyzing the questionnaire responses, electroencephalogram (EEG) signals, and peripheral signals of the players playing a Tetris game at three difficulty levels. This analysis confirms that the different difficulty levels correspond to distinguishable emotions, and that, playing several times at the same difficulty level gives rise to boredom. The next step was to train several classifiers to automatically detect the three emotional classes from EEG and peripheral signals in a player-independent framework. By using either type of signals, the emotional classes were successfully recovered, with EEG having a better accuracy than peripheral signals on short periods of time. After the fusion of the two signal categories, the accuracy raised up to 63%.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:41 ,  Issue: 6 )