By Topic

Performance Evaluation of AODV, DSDV & DSR for Quasi Random Deployment of Sensor Nodes in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nandkumar Kulkarni ; Center for TelelnFrastruktur, Aalborg Univ., Aalborg, Denmark ; Ramjee Prasad ; Horia Cornean ; Nisha Gupta

Sensor deployment is one of the key topics addressed in Wireless Sensor Network (WSN). This paper proposes a new deployment technique of sensor nodes for WSN called as Quasi Random Deployment (QRD). The novel approach to deploy sensor nodes in QRD fashion is to improve the energy efficiency of the WSN in order to increase the network life time and coverage. The QRD produces highly uniform coordinates and it systematically fills the specified area. Along with Random Deployment (RD) pattern of wireless sensor node QRD is analysed in this study. The network is simulated using NS-2 simulator. The efficiency of this deployment is evaluated assuming three routing protocols used for the adhoc networks. They are AODV, DSDV, and DSR. The protocol assumed at transport layer is UDP. Application layer generates the CBR traffic. The performance of these three routing techniques is compared based on total energy consumption, coverage area. The simulation results show that the conventional routing protocols like DSR have a best performance for both RD and QRD of the sensor nodes when there is no mobility of the sensor nodes as compared to AODV and DSDV. Among AODV and DSDV, AODV performs better as compared to DSDV.

Published in:

Devices and Communications (ICDeCom), 2011 International Conference on

Date of Conference:

24-25 Feb. 2011