Cart (Loading....) | Create Account
Close category search window
 

Calculation of self- and mutual impedances in planar sandwich inductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hurley, W.G. ; Dept. of Electron. Eng., Univ. Coll. Galway, Ireland ; Duffy, M.C.

High-frequency planar magnetic components, employing thin film and thick film technology, have become important components in applications, such as filters and switching converters, due to their ease of manufacture and reliability. In a previous paper, the authors established a frequency dependent impedance formula for planar coils on a magnetic substrate that is infinitely thick. In this paper, two new impedance models are described: the first is for planar coils on a magnetic substrate of finite thickness, and the second represents a planar coil sandwiched between two substrates. The models include the electrical conductivity of the magnetic material so that the effects of eddy currents, particularly at high frequencies, are taken into account. The eddy currents reduce the inductance and increase the losses associated with the device. The new impedance formulas are derived from Maxwell's equations. Simulations were carried out on a typical device, using finite element analysis, and the results validate the new formulas. This paper establishes the frequency limitations of lossy magnetic substrates

Published in:

Magnetics, IEEE Transactions on  (Volume:33 ,  Issue: 3 )

Date of Publication:

May 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.