By Topic

Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jeng-Han Tsai ; Dept. of Appl. Electron. Technol., Nat. Taiwan Normal Univ., Taipei, Taiwan

In this paper, low-voltage evolution and high-speed operation mixer design are presented for millimeter-wave (MMW) CMOS in-phase/quadrature (I/Q) modulator and demodulator. The modified Gilbert-cell mixer architecture, which eliminates the three-level transistors stacking in the conventional Gilbert-cell mixer, can operate at a reduced supply voltage while maintaining reasonable performance. In addition, IF transimpedance amplifier buffer and wideband RF design are introduced to increase the operation speed of the mixer for MMW gigabit wireless transmission link applications. Using a 0.13-μm CMOS process, the I/Q modulator and demodulator formed with the modified Gilbert-cell mixers are demonstrated at the MMW. Under 1.2-V standard supply voltage, the modulator and demodulator exhibit excellent conversion gain (CG) flatness of -3.5 ±1.5 dB and -3 ±1.5 dB from 41 to 69.5 GHz and 31 to 69 GHz, respectively. For 60-GHz wireless personal area network applications, π/4 differential quadrature phase-shift keying, 16 quadrature amplitude modulation, and binary phase-shift keying modulation signal tests are successfully performed through the direct-conversion system. The results show that the presented monolithic microwave integrated circuits can operate at low-voltage and low-power while providing good CG and high data rate, even up to multigigabit.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 5 )