By Topic

Unobtrusive Assessment of Motor Patterns During Sleep Based on Mattress Indentation Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Verhaert, V. ; Div. of Biomech. & Eng. Design, Katholieke Univ. Leuven, Leuven, Belgium ; Haex, B. ; De Wilde, T. ; Berckmans, D.
more authors

This study investigates how integrated bed measurements can be used to assess motor patterns (movements and postures) during sleep. An algorithm has been developed that detects movements based on the time derivate of mattress surface indentation. After each movement, the algorithm recognizes the adopted sleep posture based on an image feature vector and an optimal separating hyperplane constructed with the theory of support vector machines. The developed algorithm has been tested on a dataset of 30 fully recorded nights in a sleep laboratory. Movement detection has been compared to actigraphy, whereas posture recognition has been validated with a manual posture scoring based on video frames and chest orientation. Results show a high sensitivity for movement detection (91.2%) and posture recognition (between 83.6% and 95.9%), indicating that mattress indentation provides an accurate and unobtrusive measure to assess motor patterns during sleep.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 5 )