Cart (Loading....) | Create Account
Close category search window
 

Halftone-Image Security Improving Using Overall Minimal-Error Searching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing-Ming Guo ; Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Yun-Fu Liu

For image-based data hiding, it is difficult to achieve good image quality when high embedding capacity and 100% data extraction are also demanded. In this study, the proposed method, namely, overall minimal-error searching (OMES) is developed to meet the aforementioned requirements. Moreover, the concept of secret sharing is also adopted to distribute watermarks into multiple halftone images, and the embedded information can only be extracted when all of the marked images are gathered. The OMES modifies the halftone values at the same position of all host images with the trained substitution table (S-Table). The S-Table makes the original combination of these halftone values as another meaningful combination for embedding watermark, which is the key part in determining the image quality. Thus, an optimization procedure is proposed to achieve the optimized S-Table. Two different encoders, called error-diffused-based and least-mean-square-based approaches are also developed to cooperate with the proposed OMES to cope with high processing speed and high image quality applications, respectively. Finally, for resisting the issues caused by the print-and-scan attack, such as zooming, rotation, and dot gain effect, a compensation correction procedure is also proposed. As demonstrated in the experimental results, the proposed approach provides good image quality, and is able to guard against some frequent happened attacks in printing applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.