By Topic

Fuzzy-Zoning-Based Classification for Handwritten Characters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pirlo, G. ; Dipt. di Inf., Univ. of Bari, Bari, Italy ; Impedovo, D.

In zoning-based classification, a membership function defines the way a feature influences the different zones of the zoning method. This paper presents a new class of membership functions, which are called fuzzy-membership functions (FMFs), for zoning-based classification. These FMFs can be easily adapted to the specific characteristics of a classification problem in order to maximize classification performance. In this research, a real-coded genetic algorithm is presented to find, in a single optimization procedure, the optimal FMF, together with the optimal zoning described by Voronoi tessellation. The experimental results, which are carried out in the field of handwritten digit and character recognition, indicate that optimal FMF performs better than other membership functions based on abstract-level, ranked-level, and measurement-level weighting models, which can be found in the literature.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 4 )