Cart (Loading....) | Create Account
Close category search window
 

Magnetization process and domain structure in the near-surface region of conventional amorphous wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chiriac, H. ; National Institute of R&D for Technical Physics; 47 Mangeron Boulevard, RO-700050 Iaşi, Romania ; Lostun, Mihaela ; Ovari, Tibor-Adrian

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3536671 

Results on the study of the surface magnetization process and domain structure by magneto-optical Kerr effect in conventional rapidly quenched amorphous magnetic wires are reported. Domain imaging confirms the presence of a bamboo-type structure in the near-surface region of these materials. Surface Kerr loops show that the overall magnetization in the near-surface region has a large axial component, besides the circular one. A bistable magnetic behavior on the axial direction has been emphasized. A circularly applied field leads to the disappearance of axial magnetic bistability. Kerr loops are changed by the presence of 180° interdomain walls in the near-surface region.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 7 )

Date of Publication:

Apr 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.