By Topic

Spectrum Trading in Cognitive Radio Networks: A Contract-Theoretic Modeling Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Gao ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Xinbing Wang ; Youyun Xu ; Qian Zhang

Cognitive radio is a promising paradigm to achieve efficient utilization of spectrum resource by allowing the unlicensed users (i.e., secondary users, SUs) to access the licensed spectrum. Market-driven spectrum trading is an efficient way to achieve dynamic spectrum accessing/sharing. In this paper, we consider the problem of spectrum trading with single primary spectrum owner (or primary user, PO) selling his idle spectrum to multiple SUs. We model the trading process as a monopoly market, in which the PO acts as monopolist who sets the qualities and prices for the spectrum he sells, and the SUs act as consumers who choose the spectrum with appropriate quality and price for purchasing. We design a monopolist-dominated quality-price contract, which is offered by the PO and contains a set of quality-price combinations each intended for a consumer type. A contract is feasible if it is incentive compatible (IC) and individually rational (IR) for each SU to purchase the spectrum with the quality-price intended for his type. We propose the necessary and sufficient conditions for the contract to be feasible. We further derive the optimal contract, which is feasible and maximizes the utility of the PO, for both discrete-consumer-type model and continuous-consumer-type model. Moreover, we analyze the social surplus, i.e., the aggregate utility of both PO and SUs, and we find that, depending on the distribution of consumer types, the social surplus under the optimal contract may be less than or close to the maximum social surplus.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 4 )