Cart (Loading....) | Create Account
Close category search window
 

Load-Balancing Spectrum Decision for Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li-Chun Wang ; Dept. of Electr. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chung-Wei Wang ; Adachi, F.

In this paper, we present an analytical framework to design system parameters for load-balancing multiuser spectrum decision schemes in cognitive radio (CR) networks. Unlike the non-load-balancing methods that multiple secondary users may contend for the same channel, the considered load-balancing schemes can distribute the traffic loads of secondary users to multiple channels. Based on the preemptive resume priority (PRP) M/G/1 queueing theory, a spectrum decision analytical model is proposed to evaluate the effects of multiple interruptions from the primary user during each link connection, the sensing errors (i.e., missed detection and false alarm) of the secondary users, and the heterogeneous channel capacity. With the objective of minimizing the overall system time of the secondary users, we derive the optimal number of candidate channels and the optimal channel selection probability for the sensing-based and the probability-based spectrum decision schemes, respectively. We find that the probability-based scheme can yield a shorter overall system time compared to the sensing-based scheme when the traffic loads of the secondary users is light, whereas the sensing-based scheme performs better in the condition of heavy traffic loads. If the secondary users can intelligently adopt the best spectrum decision scheme according to sensing time and traffic conditions, the overall system time can be improved by 50% compared to the existing methods.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.