By Topic

Optimal Cognitive Access of Markovian Channels under Tight Collision Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Li ; Center for Intelligent and Networked System, Department of Automation and TNLIST, Tsinghua University, Beijing 100084, China ; Qianchuan Zhao ; Xiaohong Guan ; Lang Tong

The problem of cognitive access of channels of primary users by a secondary user is considered. The transmissions of primary users are modeled as independent continuous-time Markovian on-off processes. A secondary cognitive user employs a slotted transmission format, and it senses one of the possible channels before transmission. The objective of the cognitive user is to maximize its throughput subject to collision constraints imposed by the primary users. The optimal access strategy is in general a solution of a constrained partially observable Markov decision process, which involves a constrained optimization in an infinite dimensional functional space. It is shown in this paper that, when the collision constraints are tight, the optimal access strategy can be implemented by a simple memoryless access policy with periodic channel sensing. Analytical expressions are given for the thresholds on collision probabilities for which memoryless access performs optimally. Extensions to multiple secondary users are also presented. Numerical and theoretical results are presented to validate and extend the analysis for different practical scenarios.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:29 ,  Issue: 4 )