By Topic

Analysis and improvement of a human ventricular cell model for investigation of cardiac arrhythmias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carro, J. ; Inst. de Investig. en Ing. de Aragon (I3A), Univ. de Zaragoza, Zaragoza, Spain ; Rodríguez, J.F. ; Laguna, P. ; Pueyo, E.

The use of experiments for studying cardiac arrhythmias, the effect of drugs, or pathologies on cardiac electrophysiology is very limited. This has made mathematical modeling and simulation of heart's electrical activity a fundamental tool to understand cardiac behavior. In this study several modifications were introduced to a recently proposed human ventricular cell model. Four stimulation protocols were applied to the original and improved models of isolated cell, and a number of cellular arrhythmic risk biomarkers were computed: steady-state action potential (AP) and [Ca2+] transient properties, AP duration (APD) restitution curves, APD adaptation to abrupt changes in heart rate, and intracellular [Ca2+] and [Na+] rate dependence. Our modifications led to: a) further improved AP triangulation (78.1 ms); b) APD rate adaptation curves characterized by fast and slow time constants within physiological ranges (10.1 s and 105.9 s); c) maximum S1S2 restitution slope in accordance with experimental data (SS1S2 = 1.0).

Published in:

Computing in Cardiology, 2010

Date of Conference:

26-29 Sept. 2010