Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

ECG motion artefact reduction improvements of a chest-based wireless patient monitoring system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Catherwood, P.A. ; Univ. of Ulster, Jordanstown, UK ; Donnelly, N. ; Anderson, J. ; McLaughlin, J.

An evaluation of motion artefact for a newly CE approved wireless bodyworn monitoring device is presented. This evaluation has shown that the system under test has greatly reduced motion artefact with comparison to an FDA-approved leaded system. Analysis of physiological data, such as quality of ECG signal, accuracy of recording of heart rate, temperature and ECG R-R interval has shown the system to offer high fidelity recordings and a robust service during a range of basic movements. Presented results have shown that the average difference in heart rate between the prototype and the reference device was 3.8bpm with standard deviation of 12.4bpm. Temperature analysis indicated the average difference between the prototype and the reference device was 5.66°C, with standard deviation of 0.44°C. R-R interval analysis highlighted mean interval difference as 78.96ms with standard deviation of 123.1ms. In general, the user activity of bending had highest errors due to the considerable torso movement.

Published in:

Computing in Cardiology, 2010

Date of Conference:

26-29 Sept. 2010