By Topic

IAA Spectral Estimation: Fast Implementation Using the Gohberg–Semencul Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming Xue ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Luzhou Xu ; Jian Li

We consider fast implementations of the weighted least-squares based iterative adaptive approach (IAA) for one-dimensional (1-D) and two-dimensional (2-D) spectral estimation of uniformly sampled data. IAA is a robust, user parameter-free and nonparametric adaptive algorithm that can work with a single data sequence or snapshot. Compared to the conventional periodogram, IAA can be used to significantly increase the resolution and suppress the sidelobe levels. However, due to its high computational complexity, IAA can only be used in applications involving small-sized data. We present herein novel fast implementations of IAA using the Gohberg-Semencul (G-S)-type factorization of the IAA covariance matrices. By exploiting the Toeplitz structure of the said matrices, we are able to reduce the computational cost by at least two orders of magnitudes even for moderate data sizes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 7 )