By Topic

Maximum a Posteriori Estimation of Linear Shape Variation With Application to Vertebra and Cartilage Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Crimi, A. ; Dept. of Comput. Sci. (DIKU), Univ. of Copenhagen, Copenhagen, Denmark ; Lillholm, M. ; Nielsen, M. ; Ghosh, A.
more authors

The estimation of covariance matrices is a crucial step in several statistical tasks. Especially when using few samples of a high dimensional representation of shapes, the standard maximum likelihood estimation (ML) of the covariance matrix can be far from the truth, is often rank deficient, and may lead to unreliable results. In this paper, we discuss regularization by prior knowledge using maximum a posteriori (MAP) estimates. We compare ML to MAP using a number of priors and to Tikhonov regularization. We evaluate the covariance estimates on both synthetic and real data, and we analyze the estimates' influence on a missing-data reconstruction task, where high resolution vertebra and cartilage models are reconstructed from incomplete and lower dimensional representations. Our results demonstrate that our methods outperform the traditional ML method and Tikhonov regularization.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 8 )