By Topic

Experiments with wireless sensor networks for real-time athlete monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ashay Dhamdhere ; School of EE&T, University of New South Wales, Sydney, NSW 2052, Australia ; Hao Chen ; Alex Kurusingal ; Vijay Sivaraman
more authors

Real-time physiological monitoring of athletes during sporting events has tremendous potential for maximizing player performance while preventing burn-out and injury, and also enabling exciting new applications such as referee-assist services and enhanced television broadcast. Emerging advanced monitoring devices have the right combination of light weight and unobtrusive size to allow truly non-intrusive monitoring during competition. However their small battery capacities, limited wireless ranges and susceptibility to body effects make real-time data extraction a challenge, particularly in sports with a large playing area. In this work we present the novel application of body area sensor networks to monitoring soccer players in a soccer field. We begin by outlining the challenges in experimental data collection and elaborate on the design choices we have made. Secondly, we show that the inherent characteristics of the operating environment lead to unacceptably high delays for direct transmissions from the players to the base stations. This leads to our third contribution, namely a multi-hop routing protocol that balances between the competing objectives of resource consumption and delay.

Published in:

Local Computer Networks (LCN), 2010 IEEE 35th Conference on

Date of Conference:

10-14 Oct. 2010