By Topic

Mixed H2/H approach to fault-tolerant controller design for lipschitz non-linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Khosrowjerdi, M.J. ; Dept. of Electr. Eng., Sahand Univ. of Technol., Tabriz, Iran

This study is concerned with the design of fault-tolerant controller for Lipschitz non-linear continuous-time systems in the presence of disturbances and noises. The simultaneous estimation of actuator faults and states is formulated as a mixed H2/H control problem. The fault-tolerant controller is then designed to compensate for the effect of the faults by stabilising the closed-loop system and guaranteeing a prescribed performance level in the presence of disturbances. This design problem is reduced to a linear matrix inequality feasibility problem and a constructive algorithm is proposed. Two examples are presented to demonstrate the performance of the proposed fault-tolerant control scheme.

Published in:

Control Theory & Applications, IET  (Volume:5 ,  Issue: 2 )