Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multirobot Active Target Tracking With Combinations of Relative Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ke Zhou ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Roumeliotis, S.I.

In this paper, we study the problem of optimal trajectory generation for a team of heterogeneous robots moving in a plane and tracking a moving target by processing relative observations, i.e., distance and/or bearing. Contrary to previous approaches, we explicitly consider limits on the robots' speed and impose constraints on the minimum distance at which the robots are allowed to approach the target. We first address the case of a single tracking sensor and seek the next sensing location in order to minimize the uncertainty about the target's position. We show that although the corresponding optimization problem involves a nonconvex objective function and a nonconvex constraint, its global optimal solution can be determined analytically. We then extend the approach to the case of multiple sensors and propose an iterative algorithm, i.e., the Gauss-Seidel relaxation (GSR), to determine the next best sensing location for each sensor. Extensive simulation results demonstrate that the GSR algorithm, whose computational complexity is linear in the number of sensors, achieves higher tracking accuracy than gradient descent methods and has performance that is indistinguishable from that of a grid-based exhaustive search, whose cost is exponential in the number of sensors. Finally, through experiments, we demonstrate that the proposed GSR algorithm is robust and applicable to real systems.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 4 )