By Topic

Investigating the Minimum Required Number of Genes for the Classification of Neuromuscular Disease Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sakellariou, A. ; Biomed. Res. Found., Acad. of Athens, Athens, Greece ; Sanoudou, D. ; Spyrou, G.

The discovery of potential microarray markers, which will expedite molecular diagnosis/prognosis and provide reliable results to clinical decision-making and treatment selection for patients, is of paramount importance. Feature selection techniques, which aim at minimizing the dimensionality of the microarray data by keeping the most statistically significant genes, are a powerful approach toward this goal. In this paper, we investigate the minimum required subsets of genes, which best classify neuromuscular disease data. For this purpose, we implemented a methodology pipeline that facilitated the use of multiple feature selection methods and subsequent performance of data classification. Five feature selection methods on datasets from ten different neuromuscular diseases were utilized. Our findings reveal subsets of very small number of genes, which can successfully classify normal/disease samples. Interestingly, we observe that similar classification results may be obtained from different subsets of genes. The proposed methodology can expedite the identification of small gene subsets with high-classification accuracy that could ultimately be used in the genetics clinics for diagnostic, prognostic, and pharmacogenomic purposes.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 3 )