Cart (Loading....) | Create Account
Close category search window
 

Implementation of Voltage-Based Commutation in Space-Vector-Modulated Matrix Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hongwu She ; Coll. of Electr. & Electron. Eng, Huazhong Univ. of Sci. & Technol., Wuhan, China ; Hua Lin ; Bi He ; Xingwei Wang
more authors

A novel voltage-based commutation (VBC) strategy without explicit input-voltage measurement is proposed in this paper. By properly selecting the width of the critical intervals, the two-step uncritical commutation and four-step critical commutation approaches are utilized to realize safe VBC. The general switching patterns of space-vector modulation (SVM) are analyzed, and the four-step critical commutations are avoided by using four selected SVM switching patterns; thus, all the commutations in the matrix converter can be achieved by two-step VBC. In order to prevent the commutation processes from being interrupted, the triple-zero-vector switching pattern and the single-zero-vector switching pattern are utilized by selecting an appropriate commutation time and the output-voltage/current distortion is minimized. Prototype experiments have been carried out to show the validity of the control strategies.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.