By Topic

Agent Identification Using a Sparse Bayesian Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Huiping Duan ; L. C. Pegasus Corporation, Hillside, NJ, USA ; Hongbin Li ; Jing Xie ; Nicolai S. Panikov
more authors

Identifying agents in a linear mixture is a fundamental problem in spectral sensing applications including chemical and biological agent identification. In general, the size of the spectral signature library is usually much larger than the number of agents really present. Based on this fact, the sparsity of the mixing coefficient vector can be utilized to help improve the identification performance. In this paper, we propose a new agent identification method by using a sparse Bayesian model. The proposed iterative algorithm takes into account the nonnegativity of the abundance fractions and is proved to be convergent. Numerical studies with a set of ultraviolet (UV) to infrared (IR) spectra are carried out for demonstration. The effect of the signature mismatch is also studied using a group of terahertz (THz) spectra.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 10 )