By Topic

Object categorization using Cartesian Genetic Programming (CGP) and CGP-Evolved Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salahuddin, S. ; Dept. of Comput. Syst. Eng., Univ. of Eng. & Technol., Peshawar, Pakistan ; Khan, M.M.

In this paper, we address the problem of recognizing object categories by proposing a learning model based on evolutionary algorithm that takes unsegmented, complex images which is tolerant to 2D affine transformations such as scaling and translation in the image plane and 3D transformations of an object such as illumination changes and rotation in depth. To achieve this, first object features are extracted from an image using modified Bag of Keypoints model and then learning and classification is performed through evolutionary network classifiers i.e. Cartesian Genetic Programming (CGP) and Cartesian Genetic Programming Evolved Artificial Neural Network (CG-PANN). Our empirical evaluations show that proposed network classifiers exhibit outstanding ability of learning from fewer training examples with good accuracy. Results are compared with NEAT-Evolved Artificial Neural Network classifier which shows clearly that our network classifiers outperform and generalize better than NEAT.

Published in:

Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference on

Date of Conference:

5-8 Dec. 2010