Cart (Loading....) | Create Account
Close category search window
 

Development and Characterization of Repetitive 1-kJ Marx-Generator-Driven Reflex Triode System for High-Power Microwave Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Sharma, A. ; Accel. & Pulse Power Div., Bhabha Atomic Res. Centre, Mumbai, India ; Kumar, S. ; Mitra, S. ; Sharma, V.
more authors

This paper presents the design and development of a repetitive Marx generator rated at 1 kJ, 300 kV, 12 kA, and 10 Hz and which is suitable to drive the load directly. Bipolar charging of a Marx generator scheme has been adopted to get the following: 1) faster rise time and 2) relatively low charging voltage. The faster rise time is due to the reduced number of spark gaps down to six for 12 in-series capacitors (0.15 μF and 50 kV) of a six-stage bipolar-charging Marx generator. Interstage inductive charging further enhances the efficiency of the overall system as compared to resistive charging. The generator is characterized by an aqueous resistive load for both polarities at the output voltage. Output voltages of the same magnitude have been achieved for both polarities. The matched impedance is found to be 25 Ω for which a suitable reflex triode is designed. Intense electron beams and high-power microwaves have been generated using this Marx generator and reflex triode system. Experimental results demonstrating the Marx generator and the reflex triode operation are presented and discussed.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.