By Topic

A Review of Computer Vision Techniques for the Analysis of Urban Traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buch, N. ; Kristl, Seibt & Co. GmbH, Graz, Austria ; Velastin, S.A. ; Orwell, J.

Automatic video analysis from urban surveillance cameras is a fast-emerging field based on computer vision techniques. We present here a comprehensive review of the state-of-the-art computer vision for traffic video with a critical analysis and an outlook to future research directions. This field is of increasing relevance for intelligent transport systems (ITSs). The decreasing hardware cost and, therefore, the increasing deployment of cameras have opened a wide application field for video analytics. Several monitoring objectives such as congestion, traffic rule violation, and vehicle interaction can be targeted using cameras that were typically originally installed for human operators. Systems for the detection and classification of vehicles on highways have successfully been using classical visual surveillance techniques such as background estimation and motion tracking for some time. The urban domain is more challenging with respect to traffic density, lower camera angles that lead to a high degree of occlusion, and the variety of road users. Methods from object categorization and 3-D modeling have inspired more advanced techniques to tackle these challenges. There is no commonly used data set or benchmark challenge, which makes the direct comparison of the proposed algorithms difficult. In addition, evaluation under challenging weather conditions (e.g., rain, fog, and darkness) would be desirable but is rarely performed. Future work should be directed toward robust combined detectors and classifiers for all road users, with a focus on realistic conditions during evaluation.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )