By Topic

Automatic Image Registration Through Image Segmentation and SIFT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goncalves, H. ; Dept. de Geociencias, Ambiente e Ordenamento do Territorio, Univ. do Porto, Porto, Portugal ; Corte-Real, L. ; Goncalves, J.A.

Automatic image registration (AIR) is still a present challenge for the remote sensing community. Although a wide variety of AIR methods have been proposed in the last few years, there are several drawbacks which avoid their common use in practice. The recently proposed scale invariant feature transform (SIFT) approach has already revealed to be a powerful tool for the obtention of tie points in general image processing tasks, but it has a limited performance when directly applied to remote sensing images. In this paper, a new AIR method is proposed, based on the combination of image segmentation and SIFT, complemented by a robust procedure of outlier removal. This combination allows for an accurate obtention of tie points for a pair of remote sensing images, being a powerful scheme for AIR. Both synthetic and real data have been considered in this work for the evaluation of the proposed methodology, comprising medium and high spatial resolution images, and single-band, multispectral, and hyperspectral images. A set of measures which allow for an objective evaluation of the geometric correction process quality has been used. The proposed methodology allows for a fully automatic registration of pairs of remote sensing images, leading to a subpixel accuracy for the whole considered data set. Furthermore, it is able to account for differences in spectral content, rotation, scale, translation, different viewpoint, and change in illumination.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 7 )