Cart (Loading....) | Create Account
Close category search window
 

Localized Multiple Kernel Learning for Realistic Human Action Recognition in Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yan Song ; Lab. of Adv. Comput. Res., Chinese Acad. of Sci., Beijing, China ; Yan-Tao Zheng ; Sheng Tang ; Xiangdong Zhou
more authors

Realistic human action recognition in videos has been a useful yet challenging task. Video shots of same actions may present huge intra-class variations in terms of visual appearance, kinetic patterns, video shooting, and editing styles. Heterogeneous feature representations of videos pose another challenge on how to effectively handle the redundancy, complementariness and disagreement in these features. This paper proposes a localized multiple kernel learning (L-MKL) algorithm to tackle the issues above. L-MKL integrates the localized classifier ensemble learning and multiple kernel learning in a unified framework to leverage the strengths of both. The basis of L-MKL is to build multiple kernel classifiers on diverse features at subspace localities of heterogeneous representations. L-MKL integrates the discriminability of complementary features locally and enables localized MKL classifiers to deliver better performance in its own region of expertise. Specifically, L-MKL develops a locality gating model to partition the input space of heterogeneous representations to a set of localities of simpler data structure. Each locality then learns its localized optimal combination of Mercer kernels of heterogeneous features. Finally, the gating model coordinates the localized multiple kernel classifiers globally to perform action recognition. Experiments on two datasets show that the proposed approach delivers promising performance.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.