Cart (Loading....) | Create Account
Close category search window

High pressure pump as lab on chip component for micro-fluidic integrated system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hiraoka, M. ; Adv. Technol. Res. Labs., Panasonic Corp., Kyoto, Japan ; Fiorini, P. ; Yamashita, I. ; Van Hoof, C.
more authors

We developed a miniaturized pump (8 mm diameter, 1 mm thickness) which generates a flow rate of 2 μL/min at a pressure of 3 MPa. It consists of a stack of several conductive polymer (CP) layers intercalated with electrolyte layers. The stack is housed in a polycarbonate case specially conceived for integration in a lab-on-chip device. The actuator operates at a bias lower than 2V. A maximum strain of 13% is measured in the single CP layer when it expands against atmospheric pressure; this strain is reduced by only a factor of 3 when pressure increases to 15 MPa. Using the stacked actuator, a maximum strain of 5% is measured.

Published in:

Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on

Date of Conference:

23-27 Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.