By Topic

High-throughput automated system for statistical biosensing employing microcantilever arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bosco, F.G. ; Tech. Univ. of Denmark, Lyngby, Denmark ; Chen, C.H. ; Hwu, E.T. ; Bache, M.
more authors

In this paper we present a completely new and fully automated system for parallel microcantilever-based biosensing. Our platform is able to monitor simultaneously the change of resonance frequency (dynamic mode), of deflection (static mode), and of surface roughness of hundreds of cantilevers in a very short time over multiple biochemical reactions. We have proven that our system is capable to measure 900 independent microsensors in less than a second. Here, we report statistical biosensing results performed over a haptens-antibody assay, where complete characterization of the biochemical binding on the cantilever surfaces is obtained with higher accuracy than standard optical lever-based setups.

Published in:

Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on

Date of Conference:

23-27 Jan. 2011