By Topic

6.4 GHz acoustic sensor for in-situ monitoring of AFM tip wear

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper demonstrates an acoustic sensor that can resolve atomic force microscopy (AFM) tip blunting with a frequency sensitivity of 0.007%. The AFM tip is fabricated on a thin film piezoelectric aluminum nitride (AlN) membrane that is excited as a film bulk acoustic resonator (FBAR). We demonstrate that cutting 0.98 μm off of the tip apex results in a resonance frequency change of 0.4MHz at 6.387GHz. This work demonstrates the potential for in-situ monitoring of AFM tip wear.

Published in:

Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on

Date of Conference:

23-27 Jan. 2011