Cart (Loading....) | Create Account
Close category search window
 

Video imaging of biomolecular processes by high-speed AFM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ando, T. ; Dept. of Phys., Kanazawa Univ., Kanazawa, Japan

The imaging rate of conventional atomic force microscopy (AFM) is too low to capture the dynamic behavior of biomolecules. To overcome this problem, we have been developing various devices and techniques, including small cantilevers and high-speed scanners. The feedback bandwidth in the tapping-mode now exceeds 100 kHz and hence the maximum possible imaging rate reaches 25 frames per sec (fps). Importantly the tip-force exerting onto the sample is dramatically reduced. Thus, it is now possible to take video images of dynamically moving protein molecules in action without disturbing their function, including walking myosin V molecules along action tracks.

Published in:

Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on

Date of Conference:

23-27 Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.