By Topic

Capacity and Delay Analysis of Next-Generation Passive Optical Networks (NG-PONs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Frank Aurzada ; Department of Mathematics, Technical University Berlin, 10623 Berlin, Germany ; Michael Scheutzow ; Martin Reisslein ; Navid Ghazisaidi
more authors

Building on the Ethernet Passive Optical Network (EPON) and Gigabit PON (GPON) standards, Next-Generation (NG) PONs (i) provide increased data rates, split ratios, wavelengths counts, and fiber lengths, as well as (ii) allow for all-optical integration of access and metro networks. In this paper we provide a comprehensive probabilistic analysis of the capacity (maximum mean packet throughput) and packet delay of subnetworks that can be used to form NG-PONs. Our analysis can cover a wide range of NG-PONs through taking the minimum capacity of the subnetworks forming the NG-PON and weighing the packet delays of the subnetworks. Our numerical and simulation results indicate that our analysis quite accurately characterizes the throughput-delay performance of EPON/GPON tree networks, including networks upgraded with higher data rates and wavelength counts. Our analysis also characterizes the trade-offs and bottlenecks when integrating EPON/GPON tree networks across a metro area with a ring, a Passive Star Coupler (PSC), or an Arrayed Waveguide Grating (AWG) for uniform and non-uniform traffic. To the best of our knowledge, the presented analysis is the first to consider multiple PONs interconnected via a metro network.

Published in:

IEEE Transactions on Communications  (Volume:59 ,  Issue: 5 )