By Topic

Complete Delay-Decomposing Approach to Asymptotic Stability for Neural Networks With Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hong-Bing Zeng ; Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China ; Yong He ; Min Wu ; Chang-Fan Zhang

This paper is concerned with the problem of stability of neural networks with time-varying delays. A novel Lyapunov-Krasovskii functional decomposing the delays in all integral terms is proposed. By exploiting all possible information and considering independent upper bounds of the delay derivative in various delay intervals, some new generalized delay-dependent stability criteria are established, which are different from the existing ones and improve upon previous results. Numerical examples are finally given to demonstrate the effectiveness and the merits of the proposed method.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 5 )