By Topic

SHIP: A Scalable Hierarchical Power Control Architecture for Large-Scale Data Centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaorui Wang ; The Ohio State University, Columbus ; Ming Chen ; Charles Lefurgy ; Tom W. Keller

In today's data centers, precisely controlling server power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasingly high server density. While various power control strategies have been recently proposed, existing solutions are not scalable to control the power consumption of an entire large-scale data center, because these solutions are designed only for a single server or a rack enclosure. In a modern data center, however, power control needs to be enforced at three levels: rack enclosure, power distribution unit, and the entire data center, due to the physical and contractual power limits at each level. This paper presents SHIP, a highly scalable hierarchical power control architecture for large-scale data centers. SHIP is designed based on well-established control theory for analytical assurance of control accuracy and system stability. Empirical results on a physical testbed show that our control solution can provide precise power control, as well as power differentiations for optimized system performance and desired server priorities. In addition, our extensive simulation results based on a real trace file demonstrate the efficacy of our control solution in large-scale data centers composed of 5,415 servers.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:23 ,  Issue: 1 )