Cart (Loading....) | Create Account
Close category search window
 

Noise reduction for ultrasonic elastography using transmit-side frequency compounding: a preliminary study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shaoguo Cui ; Coll. of Comput. Sci., Sichuan Univ., Chengdu, China ; Liu, D.C.

Ultrasonic elastography is an imaging technique providing information about the relative stiffness of biological tissues. In general, elastography suffers from noise artifacts, which degrade lesion detectability and increase the likelihood of misdiagnosis. This paper proposes a method called transmit- side frequency compounding for elastography (TSFC). Beamforming is modified to transmit frames with N alternating center frequencies. Pairs of frames with the same center frequency are used to calculate sub-elastograms that are then averaged to produce one compounded elastogram. Simulation results based on an uniformly elastic tissue model demonstrate the decorrelation among sub-elastograms and the improvement in elastographic signal-to-noise ratio (SNRe) achieved by compounding sub-elastograms. An elastic phantom experiment further validates the noise reduction obtained by the proposed technique.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.