By Topic

A Markov Chain State Transition Approach to Establishing Critical Phases for AUV Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brito, M.P. ; Southampton Underwater Syst. Lab., Nat. Oceanogr. Centre, Southampton, UK ; Griffiths, G.

The deployment of complex autonomous underwater platforms for marine science comprises sequential steps each of which is critical to mission success. Here we present a state transition approach, in the form of a Markov chain, which models step sequence from prelaunch to operation to recovery. The aim is to identify states and state transitions presenting high risk to the vehicle and hence to the mission, based on evidence and judgment. Developing a Markov chain consists of two separate tasks. The first defines the structure that encodes event sequence. The second assigns probabilities to each possible transition. Our model comprises 11 discrete states, and includes distance-dependent underway survival statistics. Integration of the Markov model with underway survival statistics allows us to quantify success likelihood during each state and state transition, and consequently the likelihood of achieving desired mission goals. To illustrate this generic process, the fault history of the Autosub3 autonomous underwater vehicle (AUV) provides the information for different operation phases. In our proposed method, faults are discriminated according to the mission phase in which they took place.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:36 ,  Issue: 1 )