By Topic

Structured learning approach to image descriptor combination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Zhou ; NICTA, College of Engineering and Computer Science, School of Engineering and Information Technology, UNSW@ADFA ; Z. Fu ; A. Robles-Kelly

In this study, the authors address the problem of combining descriptors for purposes of object categorisation and classification. The authors cast the problem in a structured learning setting by viewing the classifier bank and the codewords used in the categorisation and classification tasks as random fields. In this manner, the authors can abstract the problem into a graphical model setting, in which the fusion operation is a transformation over the field of descriptors and classifiers. Thus, the problem reduces itself to that of recovering the optimal transformation using a cost function which is convex and can be converted into either a quadratic or linear programme. This cost function is related to the target function used in discrete Markov random field approaches. The authors demonstrate the utility of our algorithm for purposes of image classification and learning class categories on two datasets.

Published in:

IET Computer Vision  (Volume:5 ,  Issue: 2 )