By Topic

Three-dimensional machine vision and machinelearning algorithms applied to quality control of percussion caps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Tellaeche ; Fundacion Tekniker ; R. Arana

The exhaustive quality control is becoming very important in the world́s globalised market. One example where quality control becomes critical is the percussion cap mass production, an element assembled in firearm ammunition. These elements must achieve a minimum tolerance deviation in their fabrication. This study outlines a machine vision system development using a three-dimensional camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high-speed movement for scanning the pieces, and mechanical errors and irregularities in percussion cap placement. Owing to these problems, it is impossible to solve the problem using traditional image processing methods, and hence, machine-learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

Published in:

IET Computer Vision  (Volume:5 ,  Issue: 2 )