By Topic

Design of a Neural Network Adaptive Controller via a Constrained Invariant Ellipsoids Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fravolini, M.L. ; Dept. of Electron. & Infomation Eng., Univ. of Perugia, Perugia, Italy ; Campa, G.

In safety critical applications, control architectures based on adaptive neural networks (NNs) must satisfy strict design specifications. This paper presents a practical approach for designing a mixed linear/adaptive model reference controller that recovers the performance of a reference model, and guarantees the boundedness of the tracking error within an a priori specified compact domain, in the presence of bounded uncertainties. The linear part of the controller results from the solution of an optimization problem where specifications are expressed as linear matrix inequality constraints. The linear controller is then augmented with a general adaptive NN that compensates for the uncertainties. The only requirement for the NN is that its output must be confined within pre-specified saturation limits. Toward this end a specific NN output confinement algorithm is proposed in this paper. The main advantages of the proposed approach are that requirements in terms of worst-case performance can be easily defined during the design phase, and that the design of the adaptation mechanism is largely independent from the synthesis of the linear controller. A numerical example is used to illustrate the design methodology.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 4 )